

Theme: Physics

Abstract No: PTCOG-AO2025-ABS-0093

Therapeutic (RBE-weighted) Dose-Normalized Neutron Shielding Assessment for Multi-Ion (He, C, O, Ne) Radiotherapy

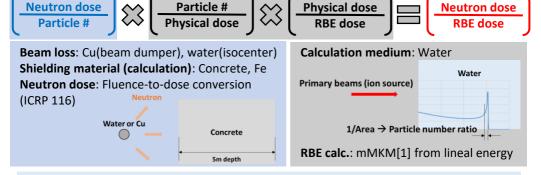
Ui-Seob Lee¹, Youngmoon Goh¹, Geum Mun Back¹, Byungchul Cho², Chul Hee Min³, Jungwon Kwak^{2*}, Jinhong Jung^{1, 2}, Si Yeol Song^{1, 2}

¹Heavy-ion Therapy Implementation Development, Asan Medical Center, Seoul, Korea

²Dept. of Radiation Oncology, Asan Medical Center, Univ. of Ulsan College of Medicine, Seoul, Korea

³Dept. of Radiation Convergence Engineering, Yonsei University, Wonju, Gangwon, Korea

Background / Aims:


- Heavy-ion radiotherapy is expanding from carbon to helium, oxygen, and neon ions.
- As multi-ion beams are not yet commercially implemented, existing heavy-ion therapy facilities have taken only carbon ions into account in their shielding design.
- While evaluating each ion individually is accurate, it is time-consuming and inefficient.
- AIM: To assess the shielding effectiveness of various ion species based on RBEweighted dose and to establish a practical multi-ion shielding calculation

Subjects and Methods:

[1] Sato T et al. Radiat Prot Dosimetry, 143, 2-4, 2011

Monte Carlo: PHITS (ver.3.35)

Beam energies: 220 MeV/u for He, 430 MeV/u for C, O, Ne

Results:

- Neutron effective dose / RBE-weighted dose
 - : C > He > O > Ne for Cu (beam dumper), C > O > He > Ne for water (isocenter)
- Neutron angular distribution in Cu is broader, being more influenced by heavier ions.
 - ➤ He ions produce a relatively higher neutron doses in the Cu medium.
- 50cm iron reduces the neutron effective dose to 1/4~1/5.
- Under the same max. energy, O and Ne require less shielding than C. However, He should be considered in shielding calculations, as its max. energy could be increased.

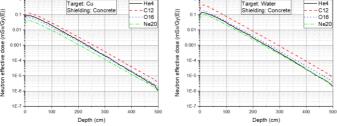


Fig. 1. Neutron effective dose versus concrete depth for Cu and water targets

Carbon ions provide a conservative basis for shielding assessment, while He ions deserve attention due to their potentially higher energy.